Geometry Summer Review
Name:

## Date:

Show your work for each problem. Use graph paper if necessary.

## Translations in Geometry

1. Translation Problem 1: Point $A(2,3)$ is translated 5 units to the right and 4 units down. What are the coordinates of the new point $A^{\prime}$ ?
$A^{\prime}(7,-1)$
2. Translation Problem 2: The triangle with vertices $A(1,2), B(4,2)$, and $C(1,6)$ is translated 3 units left and 2 units up. Find the coordinates of the vertices of the translated triangle $\left.A^{\prime} B^{\prime} C^{\prime}\right\}$.
$A^{\prime}(-2,4),\left(B^{\prime}(1,4), C^{\prime}(-2,8)\right.$
3. Translation Problem 3: Point $B(-4,5)$ is translated to $B^{\prime}(1,8)$. What was the translation rule used?
$(x, y)-(x+5, y 3)$
4. Translation Problem 4: The square with vertices $P(0,0), Q(2,0), R(2,2)$, and $S(0,2)$ is translated 3 units down and 2 units to the right. Find the coordinates of the new vertices.
$P^{\prime}(2,-3), Q^{\prime}(4,-3), R^{\prime}(4,-1), S^{\prime}(2,-1)$
5. Translation Problem 5: Describe the translation that maps $(x, y)$ to $(x-4, y+3)$.

Geometry Summer Review
Name:
Date:

4 units left and 3 units up

## Radicals in Exact Value and Decimal Form

6. Radical Problem 1: Simplify $\sqrt{ } 50$ and provide the exact value.
$5 \sqrt{ } 2$
7. Radical Problem 2: Express $\sqrt{75}$ in simplest radical form and then approximate it to two decimal places.
$5 \sqrt{ } 3 ; 8.66$
8. Radical Problem 3: Simplify $\sqrt{ } 18+3 \sqrt{ } 2$.
$6 \sqrt{ } 2$
9. Radical Problem 4: Evaluate $\sqrt{ } 45-\sqrt{ } 20$ and provide the simplified exact value.
10. Radical Problem 5: Convert $\sqrt{ } 72$ to its simplest radical form and approximate it to two decimal places.
$6 \sqrt{2}$; 8.49

Date:

## Pythagorean Theorem

11. Pythagorean Problem 1: A right triangle has legs of lengths 6 cm and 8 cm . What is the length of the hypotenuse?

## 10 cm

12. Pythagorean Problem 2: In a right triangle, the hypotenuse is 13 cm , and one leg is 5 cm . Find the length of the other leg.

## 12 cm

13. Pythagorean Problem 3: A ladder 10 feet long leans against a wall. If the base of the ladder is 6 feet from the wall, how high up the wall does the ladder reach?

## 8 ft

14. Pythagorean Problem 4: Find the length of the diagonal of a rectangle with side lengths 7 meters and 24 meters.

25m
15. Pythagorean Problem 5: A 15-foot rope is tied from the top of a 9 -foot pole to a point on the ground. How far is the point on the ground from the base of the pole?

12 ft

Geometry Summer Review
Name:

## Date:

## Solving Multi-Step Equations

16. Equation Problem 1: Solve for $x: 3 x-5=2 x+7$.
$x=12$
17. Equation Problem 2: Solve for $y$ : $4(y+3)-2 y=10$.
$y=2$
18. Equation Problem 4: Solve for $x: 5(2 x-3)+4=3 x+17$.
$x=5$
